Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1637017

ABSTRACT

Malignant melanoma is still a serious medical problem. Relatively high mortality, a still-growing number of newly diagnosed cases, and insufficiently effective methods of therapy necessitate melanoma research. Tetracyclines are compounds with pleiotropic pharmacological properties. Previously published studies on melanotic melanoma cells ascertained that minocycline and doxycycline exerted an anti-melanoma effect. The purpose of the study was to assess the anti-melanoma potential and mechanisms of action of minocycline and doxycycline using A375 and C32 human amelanotic melanoma cell lines. The obtained results indicate that the tested drugs inhibited proliferation, decreased cell viability, and induced apoptosis in amelanotic melanoma cells. The treatment caused changes in the cell cycle profile and decreased the intracellular level of reduced thiols and mitochondrial membrane potential. The exposure of A375 and C32 cells to minocycline and doxycycline triggered the release of cytochrome c and activated initiator and effector caspases. The anti-melanoma effect of analyzed drugs appeared to be related to the up-regulation of ERK1/2 and MITF. Moreover, it was noticed that minocycline and doxycycline increased the level of LC3A/B, an autophagy marker, in A375 cells. In summary, the study showed the pleiotropic anti-cancer action of minocycline and doxycycline against amelanotic melanoma cells. Considering all results, it could be concluded that doxycycline was a more potent drug than minocycline.


Subject(s)
Antineoplastic Agents/pharmacology , Doxycycline/pharmacology , Minocycline/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Biomarkers, Tumor , Caspases/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Melanoma, Amelanotic , Membrane Potential, Mitochondrial/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL